Monatshefte für Chemie 115, 1059-1064 (1984)

A Convenient Synthesis of Crotylbenzaldehydes and 2-Methylformyl-Chromans

Vinod K. Ahluwalia*, Daljeet Singh, and Rishi P. Singh

Department of Chemistry, University of Delhi, Delhi-110007, India

(Received 9 December 1983. Accepted 16 January 1984)

Condensation of hydroxybenzaldehydes viz., 2,3,4-trihydroxy-, 2,4dihydroxy-, 2,4-dihydroxy-6-methyl-, and 2,4-dihydroxy-3-iodo-6-methylbenzaldehydes with buta-1,3-diene in the presence of orthophosphoric acid yields crotylbenzaldehydes in one step. The latter compounds on cyclisation afford the corresponding 2-methylformylchromans.

(Keywords: Buta-1,3-diene; Crotylbenzaldehydes; Regiospecific crotylation; Orthophosphoric acid)

Eine einfache Synthese von Crotylbenzaldehyden und 2-Methylformyl-chromanen

Die Kondensation von Hydroxybenzaldehyden (2,3,4-Trihydroxy-, 2,4-Dihydroxy-, 2,4-Dihydroxy-6-methyl-, und 2,4-Dihydroxy-3-jod-6-methylbenzaldehyd) mit Buta-1,3-dien in Gegenwart von Orthophosphorsäure ergibt in einer Stufe Crotylbenzaldehyde. Diese lassen sich durch Cyclisierung zu den entsprechenden 2-Methylformylchromanen umsetzen.

Introduction

A number of 2-methylchromenes have been described¹ and some of them are reported to possess antijuvenile hormone activity². In view of the facile dehydrogenation³ of 2,2-dimethylchromans to the corresponding chromenes, the possibility of conversion of 2-methylchromans into 2-methylchromenes may not be ruled out. A few methods⁴⁻⁹ for nuclear crotylation and 2-methylchroman formation are known but they are tedious and give poor yields. With this view, the condensation of hydroxybenzaldehydes with buta-1,3-diene in presence of orthophosphoric acid has been carried out which resulted in the formation of crotylbenzaldehydes. These were cyclised to the

corresponding 2-methylformylchromans in quantitative yield. No synthesis of formyl substituted 2-methylchromans has been reported so far.

Results and Discussion

The condensation of 2,3,4-trihydroxybenzaldehyde with buta-1,3diene in the presence of orthophosphoric acid gave only one product A (yield 70%). Elemental analysis of compound A showed the introduction of one butenyl unit. Its ¹H-NMR spectrum displayed in the aliphatic region signals at δ 5.48 (m, -CH = CH -), 3.20 (d, J = 4 Hz, $-CH_2 -)$ and 1.66 (d, J = 5 Hz, CH₃) (typical for a but-2-enyl group) along with the other expected signals. It was thus assigned the structure of 5-(but-2'-enyl)-2,3,4-trihydroxybenzaldehyde (1). When 1 was heated with orthophosphoric acid at 95-100°, 6-formyl-7,8-dihydroxy-2-methyl-3,4-dihydro-2*H*-1-benzopyran (2) was obtained.

Its ¹H-NMR spectrum was in agreement with the structure, showing a singlet of one proton at δ 11.22 (chelated hydroxyl group), another singlet of one aromatic proton at 6.28, a multiplet at 4.06–4.28 (methyne proton), a distinctive triplet (J = 7 Hz) at 2.73 assigned to methylene group, a multiplet at 1.63–1.95 (methylene group) and a doublet of three protons at 1.40 ppm for the methyl group.

2,4-Dihydroxybenzaldehyde on similar condensation with buta-1,3diene gave a mixture of three products (B, C and D), which were separated on silica gel. Elemental analysis showed the introduction of one butadiene (C-4) unit in B, C and D. Compound B was assigned the structure of 3-(prop-1'-methyl-2'-enyl)-2,4-dihydroxybenzaldehyde (3) on the basis of its ¹H-NMR spectrum which showed besides other signals a multiplet of one proton at δ 4.10–4.34, two double doublets at 5.32 and 5.39 integrating for two protons in all and another multiplet at 6.10-6.31 of one proton, thus confirming the presence of a 1-methyl-prop-2-enyl group. The structure of C and D were established as 3-(but-2'-enyl)-2,4dihydroxybenzaldehyde (4) and 5-(but-2'-enyl)-2,4-dihydroxybenzaldehyde (5) on the basis of their ¹H-NMR spectra data. Compounds 4 and 5 when heated separately with orthophosphoric acid at $95-100^{\circ}$ furnished 6-formyl-5-hydroxy-2-methyl-3,4-dihydro-2H-1-benzopyran (6) and 3,4-dihvdro-6-formyl-7-hydroxy-2-methyl-2*H*-1-benzopyran (7), respectively.

Similarly, 2,4-dihydroxy-6-methylbenzaldehyde on condensation with buta-1,3-diene gave four compounds (E, F, G and H) which were again separated by column chromatography. Elemental analysis of the faster moving compound E showed the introduction of two butenyl units. It was identified as 3,5-di-(but-2'-envl)-2,4-dihydroxy-6methylbenzaldehyde (8) on the basis of its ¹H-NMR spectrum. F was assigned the tentative structure of 3-(prop-1'-methyl-2'-enyl)-2,4dihydroxy-6-methylbenzaldehyde (9) or its 5-alkenylated isomer. The ¹H-NMR spectrum of compound G showed, besides other usual signals, a singlet of one aromatic proton at $\delta 6.16$ whereas that of H showed a singlet at 6.18 ppm. Therefore a clear distinction between the structures of G and H could not be made on the basis of ¹H-NMR spectral data and hence either one of the compounds could be assigned the structure of 3-(but-2'-envl)-2,4-dihydroxy-6-methylbenzaldehyde (10) or 5-(but-2'enyl)-2,4-dihydroxy-6-methylbenzaldehyde (11). However. confirmation of the structures was provided by comparision of an authentic sample of 11, prepared as follows: 2,4-Dihydroxy-3-iodo-6methylbenzaldehyde when reacted with but-1.3-diene, underwent regiospecific crotylation at 5-position resulting in the formation of 5-(but-2'-enyl)-2,4-dihydroxy-3-iodo-6-methylbenzaldehyde (12) in 70% yield. 12 on heating with zinc and hydrochloric acid afforded 11. Hence compounds G and H could be assigned the structure of 10 and 11, respectively. These compounds (10, 11) on heating with orthophosphoric acid at $95-100^{\circ}$ furnished 2,7-dimethyl-6-formyl-5-hydroxy-3,4dihydro-2H-1-benzopyran (13) and 2,5-dimethyl-6-formyl-7-hydroxy-3,4-dihydro-2*H*-1-benzopyran (14), respectively.

Crotylbenzaldehydes and 2-methylformylchromans may be used as

important precursors for the synthesis of furocoumarins, furochalcones and pyranocoumarins, all well known naturally occurring and biologically active compounds.

Acknowledgement

We are thankful to the University Grants Commission, New Delhi, for financial assistance.

Experimental

Melting points are uncorrected. ¹H-NMR spectra were recorded on a Perkin-Elmer R-32 (90 MHz) spectrometer, with $SiMe_4$ as internal standard. Silica gel (60–120 mesh) was used for all chromatographic separations.

Reaction of 2,3,4-Trihydroxybenzaldehyde with Buta-1,3-diene: General Procedure

Buta-1,3-diene was bubbled into a mixture of 2,3,4-trihydroxybenzaldehyde (2 g, 13.0 mmol), orthophosphoric acid (85%, 2 ml) and xylene (10 ml) with constant stirring at 35–40 °C for 1–2 h. Stirring was continued for 15 h more and then the mixture neutralised with sodium hydrogen carbonate solution (5%, 100 ml). It was extracted woth ether, the organic phase washed with water, dried (Na₂SO₄) and the solvent distilled off. The residue was placed on a column of silica gel and eluted with benzene – petroleum ether (9:1) to give 1; yield: 1.9 g (70%); m. p. 133–134 °C.

Cyclisation of 5-(But-2'-enyl)-2,3,4-trihydroxybenzaldehyde (1): Formation of 6-Formyl-7,8-dihydroxy-2-methyl-3,4-dihydro-2H-1benzopyran (2):

General Procedure

A mixture of 1 (0.2 g, 0.9 mmol) and orthophosphoric acid (1.5 ml) was heated on a boiling water bath (95–100 °C) for 1–2 h. The reaction mixture was poured into ice cold water (50 ml) and the separated solid extracted with ether. The organic layer was washed with water, dried (Na₂SO₄) and the solvent evaporated to give 2 which crystallised from benzene – petroleum ether as colourless needles; yield: 0.17 g (85%); m. p. 124–125 °C.

Unambiguous Synthesis of 5-(But-2'-enyl)-2,4-dihydroxy-5-methylbenzaldehyde (11)

A solution of 12 (0.5 g, 1.5 mmol) in ethanol (15.0 ml) was refluxed with zinc dust (0.5 g) and cone. hydrochloric acid (1.5 ml) for 1 h. The reaction mixture was filtered, the solvent evaporated and the residue treated with crushed ice to give 11. It was crystallised from benzene—petroleum ether as colourless shining needles; yield: 0.25 g (80.9%); m. p. 130–131 °C.

Data for compounds 1–14: Yield [%]; m. p. [°C]; molecular formula (all compounds gave satisfactory C–H-values); NMR (CDCl₃/CD₃COCD₃), δ [ppm].

1: 70%; 133–134°; $C_{11}H_{12}O_4$; NMR: 1.66 (d, J = 5 Hz, 3 H, $-CH_3$), 3.20 (d, J = 4 Hz, 2 H, $-CH_2$ –), 5.48 (m, 2 H, -CH = CH–), 6.80 (s, 1 H, H-6), 9.53 (s, 1 H, -CHO), 12.73 (s, 1 H, 2-OH, D_2O exchangeable).

2: 85%; 124–125°; $C_{11}H_{12}O_4$; NMR: 1.40 (d, J = 7 Hz, 3 H, $-CH_3$), 1.63–1.95 (m, 2 H, 3- CH_2 –), 2.73 (t, J = 7 Hz, 2 H, 4- CH_2 –), 4.06–4.28 [m, 1 H, $-CH(CH_3)$ –], 6.28 (s, 1 H, H-5), 9.47 (s, 1 H, -CHO), 11.22 (s, 1 H, 7-OH, D₂O exchangeable).

3: 5%; 119–120°; C₁₁H₁₂O₃; NMR: 1.41 (d, J = 7 Hz, 3 H, -CH₃), 4.10–4.34 (m, 1 H, -C**H** -CH₃), 5.32 and 5.39 (each dd, $J_{vic} = 17$ Hz, 10 Hz, $J_{gem} = 2$ Hz, 2 H, =CH₂), 6.10–6.31 (m, 1 H, -CH =), 6.40 (d, J = 9 Hz, 1 H, H-5), 6.71 (s, 1 H, 4-OH, D₂O exchangeable), 7.23 (d, J = 9 Hz, 1 H, H-6); 9.56 (s, 1 H, -CHO); 12.04 (s, 1 H, 2-OH, D₂O exchangeable).

4: 40%; 110–111°; $C_{11}H_{12}O_3$; NMR: 1.56 (d, J = 5 Hz, 3 H, $-CH_3$), 3.29 (d, J = 4 Hz, 2 H, $-CH_2 -$), 5.50 (m, 2 H, -CH = CH -), 6.40 (d, J = 9 Hz, 1 H, H-5), 6.59 (s, 1 H, 4-OH, D₂O exchangeable), 7.21 (d, J = 9 Hz, 1 H, H-6), 9.58 (s, 1 H, -CHO), 11.66 (s, 1 H, 2-OH, D₂O exchangeable).

5: 40%; 130–131°; $C_{11}H_{12}O_3$; NMR: 1.65 (d, J = 5 Hz, 3 H, $-CH_3$), 3.23 (d, J = 4 Hz, 2 H, $-CH_2-$), 5.53 (m, 2 H, -CH = CH -), 6.36 (s, 1 H, H-3), 7.29 (s, 1 H, H-6), 9.68 (s, 1 H, -CHO), 11.76 (s, 1 H, 2-OH, D₂O exchangeable).

6: 80%; oil; C₁₁H₁₂O₃; NMR: 1.26 (d, J = 7 Hz, 3 H, -CH₃), 1.69–1.88 (m, 2 H, 3-CH₂-), 2.57 (t, J = 7 Hz, 2 H, 4-CH₂-), 3.89–4.13 [m, 1 H, -CH(CH₃)-], 6.28 (d, J = 9 Hz, 1 H, H-8), 7.10 (d, J = 9 Hz, 1 H, H-7), 9.52 (s, 1 H, -CHO), 11.75 (s, 1 H, 5-OH, D₂O exchangeable).

7: 85%; 120–121°; C₁₁H₁₂O₃; NMR: 1.41 (d, J = 7 Hz, 3 H, $-CH_3$), 1.72–2.02 (m, 2 H, 3-CH₂-), 2.75 (t, J = 7 Hz, 2 H, 4-CH₂-), 4.12–4.32 [m, 1 H, $-CH(CH_3)$ –]; 6.37 (s, 1 H, H-8), 7.31 (s, 1 H, H-5), 9.66 (s, 1 H, -CHO), 11.15 (s, 1 H, 7-OH, D₂O exchangeable).

8: 3%; 160–161°; $C_{16}H_{20}O_3$; NMR: 1.60 (d, J = 5 Hz, 3 H, $-CH_3$), 1.65 (d, J = 5 Hz, 3 H, $-CH_3$), 2.40 (s, 1 H, 6-CH₃), 3.21 (d, J = 4 Hz, 2 H, $-CH_2-$), 3.31 (d, J = 4 Hz, 2 H, $-CH_2-$), 5.37 (m, 2 H, -CH = CH -), 5.51 (m, 2 H, -CH = CH -), 6.10 (s, 1 H, 4-OH, D₂O exchangeable), 10.21 (s, 1 H, -CHO), 12.93 (s, 1 H, 2-OH, D₂O exchangeable).

9: 4%; 141–142°; $C_{12}H_{14}O_3$; NMR: 1.49 (d, J = 7 Hz, 3 H, $-CH(CH_3) -]$, 2.56 (s, 1 H, 6-CH₃), 4.12–4.34 [m, 1 H, $-CH(CH_3) -]$, 5.40 and 5.47 (each dd, 2 H, $J_{vic} = 17$ Hz, 10 Hz, $J_{gem} = 2$ Hz), 6.18–6.40 (m, 2 H, -CH = and H-5), 6.57 (s, 1 H, 4-OH, D₂O exchangeable), 10.32 (s, 1 H, -CHO), 13.16 (s, 1 H, 2-OH, D₂O exchangeable).

10: 38%; 148–149°; $C_{12}H_{14}O_3$; NMR: 1.51 (d, J = 5 Hz, 3 H, $=CH - CH_3$), 2.41 (s, 3 H, 6-CH₃), 3.20 (d, J = 4 Hz, 2 H, $-CH_2 -$), 5.40 (m, 2 H, -CH = CH -), 6.16 (s, 1 H, H-5), 10.08 (s, 1 H, -CHO), 12.72 (s, 1 H, 2-OH, D_2O exchangeable).

11: 39%; 130–131°; $C_{12}H_{14}O_3$; NMR: 1.58 (d, J = 5 Hz, 3 H, $=CH - CH_3$), 2.42 (s, 3 H, 6-CH₃), 3.24 (d, J = 4 Hz, 2 H, $-CH_2 -$), 5.35 (m, 2 H, -CH = CH -), 6.18 (s, 1 H, H-3), 10.32 (s, 1 H, -CHO), 12.74 (s, 1 H, 2-OH, D₂O exchangeable).

12: 70%; **16**1–**162**°; C₁₂H₁₃IO₃; **NM**R: **1.61** (d, J = 5 Hz, **3** H, =CH-CH₃), **2.41** (s, **3** H, **6**-CH₃), **3.22** (d, J = 4 Hz, **2** H, -CH₂-), **5.37** (m, **2** H, -CH=CH-), **10.15** (s, **1** H, -CHO), **12.60** (s, **1** H, **2**-OH, D₂O exchangeable).

13: 79%; oil; $C_{12}H_{14}O_3$; NMR: 1.36 [d, J = 7 Hz, 3 H, $-CH(CH_3)$], 1.60–1.81 (m, 2 H, 3-CH₂-), 2.43 (s, 3 H, 7-CH₃), 2.67 (t, J = 7 Hz, 2 H, 4-CH₂-), 4.03–4.23 [m, 1 H, $-CH(CH_3)$ -], 6.20 (s, 1 H, H-8), 10.23 (s, 1 H, -CHO), 12.85 (s, 1 H, 5-OH), D₂O exchangeable).

70 Monatshefte für Chemie, Vol 115/8-9

1064 V. K. Ahluwalia et al.: A Convenient Synthesis of Crotylbenzaldehydes

14: 81%; 125–126°; C₁₂H₁₄O₃; NMR: 1.38 (d, J = 7 Hz, 3 H, $-CH(CH_3)$], 1.60–1.80 (m, 2 H, 3-CH₂-), 3.46 (s, 3 H, 5-CH₃), 2.69 (t, J = 7 Hz, 2 H, 4-CH₂-), 4.05–4.25 [m, 1 H, $-CH(CH_3)$ -], 6.15 (s, 1 H, H-8), 10.12 (s, 1 H, -CHO), 12.86 (s, 1 H, 7-OH, D₂O exchangeable).

References

- ¹ Schweizer E. E., Meeder-Nycz D., 2H- and 4H-1-benzopyrans, in: Chromenes, Chromanones and Chromones (Ellis G. P., ed.), p. 11. New York: J. Wiley. 1977.
- ² Matolcsy G., Darwish Y. M., Belai I., Varjas L., Farag A. I., Z. Naturforsch. Sec. B 35, 1449 (1980).
- ³ Cardillo G., Cricchio R., Merlini L., Tetrahedron 24, 4825 (1968).
- ⁴ Goering H. L., Jacobson R. R., J. Amer. Chem. Soc. 80, 3277 (1958).
- ⁵ Aelong D., U.S. Patent, No. 298679, Jan. 17, 1961.
- ⁶ Bigi F., Casiraghi G., Cassnoti G., Sartori C., Synthesis 4, 310 (1981).
- ⁷ Smith L. I., King J. A., J. Amer. Chem. Soc. 63, 1887 (1941).
- ⁸ Proell W., J. Org. Chem. 16, 178 (1951).
- ⁹ Chroman, Allyl- and Aryl-chromans, in: Heterocyclic Compounds, Chromans and Tocopherol (*Ellis G. P.*, ed.), p. 8. New York: J. Wiley. 1981.